

NESC ACADEMY WEBCAST

Welcome..

A Unified Approach to Modal Reduction Methods

Part 1 of NASA SLaMS Series on Modal Synthesis

Dr. Arya Majed

Dr. Curt Larsen Curtis.e.larsen@nasa.gov

A Unified Approach to Modal Reduction Methods

_

Part 1 of NASA SLaMS Series on Modal Synthesis

Arya Majed

Outline

- Background
- Objectives
- This Webinar
- Methods Covered
- Sets and Definitions
- Equivalence Theorem
- Fixed-Interface Methods
- Free-Interface Methods
- Mixed-Interface Methods
- Concluding Remarks
- Questions

Background

- The era of the modal reduction transformations began with Hurty (1965)
- The starting of the Space Shuttle Program spurred on tremendous R&D in modal reduction transformations and modal synthesis
- Today, even with our powerful 64-bit machines, multiple cores, and access to all the required RAM, modal reduction transformations and modal synthesis plays a key role in efficient system dynamic simulations
- Modal reduction/synthesis still remains a key and active R&D area in efficient computation/simulations ... and you can contribute to this

Why Modal Synthesis? (1/2)

- With modal synthesis, you can break-up a large complex system into a "logical" set of components that make up the system
 - "logical" is often the actual interfaces between the components
- You can then use the appropriate modal transformations to significantly reduce the order of each component FEM
 - Component FEMs transform to component reduced-order Dynamic Math Models (DMMs)
- Use modal synthesis procedures to "synthesize" the component modes and calculate your system modes

Why Modal Synthesis? (2/2)

- Your original 5,000,000 DoF transient dynamics problem is now 500 DoFs with essentially no impact to accuracy
 - The speed of execution, numerical stability and convergence characteristics of your solution just increased by many orders of magnitude given the reduced-order system
 - You are now in in the driver-seat (instead of the FE-Solver)
 - You can easily and efficiently run all the sensitivity analyses that you can imagine to bound the problem and reduce mission risk
 - Would you have trusted a FE-solver with the solution of a 5,000,000 DoF transient dynamics problem to begin with?
- And there are times that you are the system integrator responsible for the system dynamic simulations
 - For this case, you will most likely be the receiver of DMMs from other organizations, so modal synthesis is required

Right Choice of Modal Reduction Method

- The answer is often dictated by the component's operating boundary conditions in the system configuration and available test data (not always aligned)
- This requires engineer familiarity with all modal reduction methods (fixed-, free-, and mixed- interface)
 - Often limited by the engineer's modal reduction knowledge/experience with most often opting for the method of most familiarity (Craig-Bampton)
- Component level test data (frequencies, mode shapes, damping) may also be available but often with different boundary conditions (free, over-constrained, ...) than in operating system but can still be incorporated into the DMM formulation

Problem

- Engineer familiarity/comfort with methods often dictated by the complexity of formulation
- For example, Hurty's paper presents a fixed-interface method using a Ritz procedure that requires a special synthesis procedure
- MacNeal's free-interface method is built upon electrical engineering analogies
- Rubin's extension of MacNeal's method uses a truncated series expansion which does not lead to a transformation at all
- Herting's mixed interface method is a brute-force derivation
- Hintz, perhaps one of the most key figures in modal transformation methods, is a virtual unknown to most engineers given the complex nature of his paper, derivations, and special synthesis procedures
- All this has led to a general gravitation towards the common basis of the simplest method, Craig-Bampton, who wrote a very nice paper providing a simple transformation augmented with a realistic example problem

Our Objectives

- Present a simple systematic approach to the derivation of all modal reduction transformations
- Increase engineer familiarity/comfort level in using all methods as required
- Understand the strengths/weaknesses in each method
- Get to the point that you can build your own method that best suits your particular application and available test data

This Webinar

- This presentation is Part 1 of a two part NASA/SLaMs webinar series on Modal Synthesis
- Part 1 will cover a "Unified Approach to Modal Reduction Methods"
- Part 2 will cover
 - Modal synthesis methods
 - Response recovery methods
 - Special topics Test Analytical Models
- Presentations are "Webinar" style; i.e., the slides require speaker commentary for completeness

Methods Covered

- Hurty
- Craig-Bampton
- Modified Hurty
- Modified Hurty w/ Attachment Modes
- Modified Hurty w/ flexibility
- Bamford
- Craig-Bampton with Inertia-Relief Modes
- Rubin
- MacNeal
- Craig-Chang
- Craig-Bampton w/ Free Interface Normal Modes

- Modified Craig-Bampton w/ Free Interface Normal Modes
- Modified Craig-Bampton w/ Free Interface Normal Modes and Inertia Relief
- Alternative Free Interface Method
- Hintz Method of Constraint Modes
- Herting
- Modified Hintz Method of Constraint Modes
- Hintz Method of Attachment Modes
- Modified Hintz Method of Attachment Modes
- Alternative Mixed Interface Methods

Set Definitions & Superscripts

Set	Size	Description
F	f	All FEM Physical DoFs
R	r	Statically Determinate Support DoFs
В	b	Redundant Interface DoFs
С	С	Additional redundant Interface DoFs
J	j	R+B
Т	t	All Interface DoFs ($T = R + B + C = J + C$)
0	0	Interior DoFs (Complement of T in F)
K	k	Modal DoFs

Superscripts:

- C Constraint Modes
- R Rigid-body Modes; Residual Flexibility Modes
- E Elastic Normal Modes
- A Attachment Modes
- N Rigid + Elastic Normal Modes

Equivalence Theorem: (Linear Algebra)

If B=PAQ, where P and Q are nonsingular matrices, then A and B are equivalent

- Special case:
 - If P = I, B = AQ then B and A are equivalent iff the inverse(Q) exists

Fixed-Interface Methods (Def.)

<u>ALL</u> physical DoFs in the Modal Reduction Coordinate Transformation Must be <u>FIXED</u> when Calculating Normal Modes

Elastic Normal Modes

Modal Solution

$$(K - \omega_k^2 M) \Phi_k^N = 0$$

$$\mathbf{\Phi}_{k}^{T} M \mathbf{\Phi}_{k} = I_{kk}$$

$$\Phi_k^T K \Phi_k = \omega_k^2$$

$$\mathbf{\Phi}_{k}^{N} = \begin{bmatrix} 0 \\ \mathbf{\Phi}_{ok}^{N} \end{bmatrix}$$

$$\mathbf{\Phi}_{k}^{N} = \begin{bmatrix} \mathbf{0} \\ \mathbf{\Phi}_{ck}^{N} \\ \mathbf{\Phi}_{ok}^{N} \end{bmatrix}$$

Mixed-Interface

$$((K + K_{bb}^{\beta}) - \omega_k^2 (M + M_{bb}^{\beta})) \Phi_k^N = 0$$

Loaded-Interface Modes

Constraint Modes (T-set)

$$\begin{bmatrix} K_{tt} & K_{to} \\ K_{ot} & K_{oo} \end{bmatrix} \begin{bmatrix} I_{tt} \\ \mathbf{\Phi}_{ot}^C \end{bmatrix} = \begin{bmatrix} F_{tt} \\ 0 \end{bmatrix}$$

$$\Phi_{ot}^C = -K_{oo}^{-1}K_{ot}$$

Constraint Modes (B-set)

$$\begin{bmatrix} K_{rr} & K_{rb} & K_{ro} \\ K_{br} & K_{bb} & K_{bo} \\ K_{or} & K_{ob} & K_{oo} \end{bmatrix} \begin{bmatrix} 0 \\ I_{bb} \\ \mathbf{\Phi}_{ob}^{C} \end{bmatrix} = \begin{bmatrix} F_{rb} \\ F_{bb} \\ 0 \end{bmatrix}$$

$$\Phi_{ob}^C = -K_{oo}^{-1}K_{ob}$$

Rigid-Body Modes (R-set; Constraint Modes)

$$\begin{bmatrix} K_{rr} & K_{rb} & K_{ro} \\ K_{br} & K_{bb} & K_{bo} \\ K_{or} & K_{ob} & K_{oo} \end{bmatrix} \begin{bmatrix} I_{rr} \\ \mathbf{\Phi}_{br}^{R} \\ \mathbf{\Phi}_{or}^{R} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{\Phi}_{\text{br}}^{R} \\ \mathbf{\Phi}_{\text{or}}^{R} \end{bmatrix} = - \begin{bmatrix} K_{bb} & K_{bo} \\ K_{ob} & K_{oo} \end{bmatrix}^{-1} \begin{bmatrix} K_{br} \\ K_{\text{or}} \end{bmatrix}$$

Hurty's Method (1965)

$$\mathbf{\Phi} = \left[\mathbf{\Phi}^R \mathbf{\Phi}^C \mathbf{\Phi}^E \right]$$

Hurty

$$\bar{K} = \begin{bmatrix} K_{rr} & K_{rb} & K_{rk} \\ K_{br} & K_{bb} & K_{bk} \\ K_{kr} & K_{kb} & K_{kk} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & K_{bb} & 0 \\ 0 & 0 & \omega_k^2 \end{bmatrix}$$
 Special Properties

Craig-Bampton (1968)

Equivalent Transformations?

$$\begin{pmatrix} x_r \\ x_b \\ x_o \end{pmatrix} = \begin{bmatrix} I_{rr} & 0 & 0 \\ 0 & I_{bb} & 0 \\ \mathbf{\Phi}_{or}^C & \mathbf{\Phi}_{ob}^C & \mathbf{\Phi}_{ok}^E \end{bmatrix} \begin{pmatrix} x_r \\ x_b \\ q_k \end{pmatrix}$$

Craig-Bampton (expanded out)

Modification of Hurty's Method

Check for Equivalence

$$\begin{bmatrix} I_{rr} & 0 & 0 \\ -\Phi_{br}^{R} & I_{bb} & 0 \\ 0 & 0 & I_{kk} \end{bmatrix} \begin{bmatrix} I_{rr} & 0 & 0 \\ \Phi_{br}^{R} & I_{bb} & 0 \\ 0 & 0 & I_{kk} \end{bmatrix} = \begin{bmatrix} I_{rr} & 0 & 0 \\ 0 & I_{bb} & 0 \\ 0 & 0 & I_{kk} \end{bmatrix}$$
 Is elementary transformation invertible? Yes

Original Hurty

Modified-Hurty

Equivalence between Modified-Hurty and Craig-Bampton

$$\begin{vmatrix} x_r \\ x_b \\ x_o \end{vmatrix} = \begin{bmatrix} I_{rr} & 0 & 0 \\ 0 & I_{bb} & 0 \\ \Phi_{or}^R - \Phi_{ob}^C \Phi_{br}^R & \Phi_{ob}^C & \Phi_{ok}^E \end{bmatrix} \begin{pmatrix} x_r \\ x_b \\ q_k \end{pmatrix} \quad \begin{pmatrix} x_r \\ x_b \\ q_k \end{pmatrix} = \begin{bmatrix} I_{rr} & 0 & 0 \\ 0 & I_{bb} & 0 \\ \Phi_{or}^C \Phi_{ob}^C \Phi_{ok}^E \end{bmatrix} \begin{pmatrix} x_r \\ x_b \\ q_k \end{pmatrix}$$

Modified-Hurty

Craig-Bampton (Expanded)

$$\mathbf{\Phi}_{\mathrm{or}}^{C} = \mathbf{\Phi}_{\mathrm{or}}^{R} - \mathbf{\Phi}_{ob}^{C} \mathbf{\Phi}_{br}^{R}$$

Attachment Modes (B-set)

$$\begin{bmatrix} K_{rr} & K_{rb} & K_{ro} \\ K_{br} & K_{bb} & K_{bo} \\ K_{or} & K_{ob} & K_{oo} \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf{\Phi}_{bb}^{A} \\ \mathbf{\Phi}_{ob}^{A} \end{bmatrix} = \begin{bmatrix} F_{rb} \\ I_{bb} \\ 0_{ob} \end{bmatrix}$$

$$\Phi_{ob}^{A} = -K_{oo}^{-1}K_{ob}\Phi_{bb}^{A}$$

Attachment Modes (B-set) Relation to Flexibility Matrix

$$\begin{bmatrix} K_{rr} & K_{rb} & K_{ro} \\ K_{br} & K_{bb} & K_{bo} \\ K_{or} & K_{ob} & K_{oo} \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf{\Phi}_{bb}^{A} \\ \mathbf{\Phi}_{ob}^{A} \end{bmatrix} = \begin{bmatrix} F_{rb} \\ I_{bb} \\ 0_{ob} \end{bmatrix}$$

$$G_{ob} = -K_{oo}^{-1}K_{ob}G_{bb}$$

$$\boldsymbol{\Phi}_{fb}^{A} = \begin{bmatrix} 0_{rr} & 0_{rb} & 0_{ro} \\ 0_{br} & G_{bb} & G_{bo} \\ 0_{or} & G_{ob} & G_{oo} \end{bmatrix} \begin{bmatrix} 0_{rb} \\ I_{bb} \\ 0_{ob} \end{bmatrix} \qquad \boldsymbol{\Phi}_{ob}^{A} = -K_{oo}^{-1}K_{ob}\boldsymbol{\Phi}_{bb}^{A}$$

$$\Phi_{ob}^A = -K_{oo}^{-1}K_{ob}\Phi_{bb}^A$$

Attachment Modes (B-set) Relation to B-set Constraint Modes

 B-set Constraint Modes

 B-set Attachment Modes

$$\begin{bmatrix} K_{rr} & K_{rb} & K_{ro} \\ K_{br} & K_{bb} & K_{bo} \\ K_{or} & K_{ob} & K_{oo} \end{bmatrix} \begin{bmatrix} 0 \\ I_{bb} \\ \Phi_{ob}^{C} \end{bmatrix} = \begin{bmatrix} F_{rb} \\ F_{bb} \\ 0_{ob} \end{bmatrix} \begin{bmatrix} K_{rr} & K_{rb} & K_{ro} \\ K_{br} & K_{bb} & K_{bo} \\ K_{or} & K_{ob} & K_{oo} \end{bmatrix} \begin{bmatrix} 0 \\ \Phi_{bb}^{A} \\ \Phi_{ob} \end{bmatrix} = \begin{bmatrix} F_{rb} \\ I_{bb} \\ 0_{ob} \end{bmatrix}$$

$$\begin{bmatrix} K_{rr} & K_{rb} & K_{ro} \\ K_{br} & K_{bb} & K_{bo} \\ K_{or} & K_{ob} & K_{oo} \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf{\Phi}_{bb}^{A} \\ \mathbf{\Phi}_{ob}^{A} \end{bmatrix} = \begin{bmatrix} F_{rb} \\ I_{bb} \\ 0_{ob} \end{bmatrix}$$

$$\Phi_{ob}^{C} = -K_{oo}^{-1}K_{ob}$$

$$\Phi_{ob}^A = -K_{oo}^{-1}K_{ob}\Phi_{bb}^A$$

$$\mathbf{\Phi}_{ob}^{A} = \mathbf{\Phi}_{ob}^{C} \mathbf{\Phi}_{bb}^{A}$$

For this case (B-set), attachment modes are a linear combination of constraint modes

What this means is that we can build an equivalent Hurty's Method with B-set Attachment Modes

27

Now we have TWO Equivalent and Useful Forms of the Hurty Transformation

Modified-Hurty w/ Constraint Modes

Craig-Bampton (Expanded)

Modified-Hurty w/ Attachment Modes

Hurty's Method w/ Attachment Modes in Terms of Flexibility

Modified Hurty's Method w/ Attachment Modes

$$\begin{bmatrix} x_r \\ x_b \\ x_o \end{bmatrix} = \begin{bmatrix} I_{rr} & 0 & 0 \\ 0 & I_{bb} & 0 \\ \boldsymbol{\Phi}_{or}^R - G_{ob} G_{bb}^{-1} \boldsymbol{\Phi}_{br}^R & -G_{ob} G_{bb}^{-1} & \boldsymbol{\Phi}_{ok}^E \end{bmatrix} \begin{bmatrix} x_r \\ x_b \\ q_k \end{bmatrix}$$

Modified Hurty's Method in Terms of Flexibility

Bamford (1966) (NASA/JPL) Method of Attachment Modes **Constrained Components Only**

Bamford introduced the B-set type attachment modes and developed a modal reduction coordinate transformation applicable for constrained components. The method required a special synthesis procedure which can be mitigated with elementary transformation.

Inertia-Relief Attachment Modes (R-set)

$$\begin{bmatrix} K_{rr} & K_{rb} & K_{ro} \\ K_{br} & K_{bb} & K_{bo} \\ K_{or} & K_{ob} & K_{oo} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \Phi_{or}^{A} \end{bmatrix} = - \begin{bmatrix} M_{rr} & M_{rb} & M_{ro} \\ M_{br} & M_{bb} & M_{bo} \\ M_{or} & M_{ob} & M_{oo} \end{bmatrix} \begin{bmatrix} I_{rr} \\ \Phi_{br}^{R} \\ \Phi_{or}^{R} \end{bmatrix} + \begin{bmatrix} F_{rr} \\ F_{br} \\ 0 \end{bmatrix}$$

$$\Phi_{\text{or}}^{A} = -K_{oo}^{-1} (M_{oo} \Phi_{\text{or}}^{R} + M_{ob} \Phi_{br}^{R} + M_{\text{or}})$$

Craig-Bampton w/ Inertia-Relief Attachment Modes

Original Craig-Bampton

$$\begin{bmatrix} x_t \\ x_o \end{bmatrix} = \begin{bmatrix} I_{tt} & 0 & 0 \\ \mathbf{\Phi}_{ot}^C & \mathbf{\Phi}_{or}^A & \mathbf{\Phi}_{ok}^E \end{bmatrix} \begin{bmatrix} x_t \\ q_r^A \\ q_k \end{bmatrix}$$

Craig-Bampton w/ Inertia-Relief Modes

Special Topic: Over-Constrained Craig-Bampton Damping Matrix

Problem: You have an over-constrained C-B stiffness and mass matrix. You also have modal damping values from a nominally constrained test configuration. You know leaving the over-constrained physical partition undamped can lead to big problems in the CLA. What can you do?

Note this is not a reduction of coordinates

$$T^T C T = \begin{bmatrix} 0_{bb} & 0_{b,c+k} \\ 0_{c+k,b} & 2\zeta_{c+k} \omega_{c+k} \end{bmatrix}$$

We know that the triple product of the unknown over-constrained damping matrix with the subject transformation is the nominally constrained damping matrix

$$C = (T^{T})^{-1} \begin{bmatrix} 0_{bb} & 0_{b,c+k} \\ 0_{c+k,b} & 2\zeta_{c+k} \omega_{c+k} \end{bmatrix} T^{-1}$$

Solve for the over-constrained damping matrix

33

Free-Interface Methods (Def.)

<u>ALL</u> physical DoFs in the Modal Reduction Coordinate Transformation Must Be <u>FREE</u> when Calculating the Normal Modes

Inertia-Relief Attachment Modes (T-set)

$$M \ddot{x} + K x = F_{ft} = \begin{bmatrix} I_{tt} \\ 0 \end{bmatrix}$$

$$x = x_r + x_e$$

$$M \ddot{x}_e + K x_e = F_{ft} - M \ddot{x}_r$$

$$M \ddot{x}_e + K x_e = F_{ft} - M \Phi_r M_{rr}^{-1} \Phi_r^T F_{ft}$$

$$M \ddot{x}_e + K x_e = (I - M \Phi_r M_{rr}^{-1} \Phi_r^T) F_{ft}$$

$$M \ddot{x}_e + K x_e = A F_{ft}$$

Inertia-Relief Attachment Modes (T-set)

$$M\ddot{x_e} + Kx_e = AF_{ft}$$

$$\begin{bmatrix} K_{rr} & K_{rb} & K_{ro} \\ K_{br} & K_{bb} & K_{bo} \\ K_{or} & K_{ob} & K_{oo} \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf{\Phi}_{bt}^{A} \\ \mathbf{\Phi}_{ot}^{A} \end{bmatrix} = \begin{bmatrix} A_{rr} & A_{rb} & A_{ro} \\ A_{br} & A_{bb} & A_{bo} \\ A_{or} & A_{ob} & A_{oo} \end{bmatrix} F_{ft} + \begin{bmatrix} R_{rt} \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ \mathbf{\Phi}_{bt}^{A} \\ \mathbf{\Phi}_{ot}^{A} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & G_{bb} & G_{bo} \\ 0 & G_{ob} & G_{oo} \end{bmatrix} \begin{bmatrix} A_{rr} & A_{rb} & A_{ro} \\ A_{br} & A_{bb} & A_{bo} \\ A_{or} & A_{ob} & A_{oo} \end{bmatrix} F_{ft}$$

$$\widetilde{\Phi}_{ft}^A = G_{ff} A_{ff} F_{ft}$$

Inertia-Relief Attachment Modes (T-set); Re-orthogonalize Relative to Rigid Body Modes

$$\begin{split} \boldsymbol{\Phi}_{ft}^{A} &= G_{ff} A_{ff} F_{ft} \\ \boldsymbol{\Phi}_{ft}^{A} &= \boldsymbol{\Phi}_{ft}^{A} - \boldsymbol{\Phi}_{fr}^{R} Q_{rt} \\ (\boldsymbol{\Phi}_{fr}^{R})^{T} M_{ff} \boldsymbol{\Phi}_{ft}^{A} &= 0 \\ Q_{rt} &= M_{rr}^{-1} (\boldsymbol{\Phi}_{fr}^{R})^{T} M_{ff} \boldsymbol{\Phi}_{ft}^{A} \\ \boldsymbol{\Phi}_{ft}^{A} &= \boldsymbol{\Phi}_{ft}^{A} - \boldsymbol{\Phi}_{fr}^{R} M_{rr}^{-1} (\boldsymbol{\Phi}_{fr}^{R})^{T} M_{ff} \boldsymbol{\Phi}_{ft}^{A} \\ \boldsymbol{\Phi}_{ft}^{A} &= A_{ff}^{T} \boldsymbol{\Phi}_{ft}^{A} \end{split}$$

Inertia-Relief Attachment Modes (T-set); Final Steps

$$egin{aligned} \widetilde{oldsymbol{\Phi}}_{\mathit{ft}}^{A} &= G_{\mathit{ff}} \, A_{\mathit{ff}} \, F_{\mathit{ft}} \ \\ egin{aligned} oldsymbol{\Phi}_{\mathit{ft}}^{A} &= A_{\mathit{ff}}^{T} \, \widetilde{oldsymbol{\Phi}}_{\mathit{ft}}^{A} \ \end{aligned} \ egin{aligned} oldsymbol{\Phi}_{\mathit{ft}}^{A} &= (A_{\mathit{ff}}^{T} \, G_{\mathit{ff}} \, A_{\mathit{ff}}) \, F_{\mathit{ft}} \end{aligned}$$

$$\Phi_{ft}^A = G_{ff}^A F_{ft}$$

Inertia-Relief Residual Flexibility Modes (T-set)

$$\boldsymbol{\Phi}_{ft}^{R} = (G_{ff}^{A} - \boldsymbol{\Phi}_{fk}^{E} \boldsymbol{\omega}_{kk}^{-2} (\boldsymbol{\Phi}_{fk}^{E})^{T}) F_{ft}$$

$$\Phi_{ft}^R = G_{ff}^R F_{ft}$$

Rubin (1975)

$$\begin{bmatrix} X_t \\ X_o \end{bmatrix} = \begin{bmatrix} I_{tt} & 0 \\ G_{ot}^R (G_{tt}^R)^{-1} & \Phi_{ok}^N - G_{ot}^R (G_{tt}^R)^{-1} \Phi_{tk}^N \end{bmatrix} \begin{bmatrix} X_t \\ Q_k \end{bmatrix}$$
 Rockwell International Late 70's early 80's in a complex ad-hoc derivation

Rockwell International* derivation

Step 1 – Break it down To component Modes

$$\begin{bmatrix} \boldsymbol{X}_t \\ \boldsymbol{X}_o \end{bmatrix} = \begin{bmatrix} \boldsymbol{G}_{tt}^R & \boldsymbol{\Phi}_{tk}^N \\ \boldsymbol{G}_{ot}^R & \boldsymbol{\Phi}_{ok}^N \end{bmatrix} \begin{bmatrix} (\boldsymbol{G}_{tt}^R)^{-1} & -(\boldsymbol{G}_{tt}^R)^{-1} \boldsymbol{\Phi}_{tk}^N \\ 0 & \boldsymbol{I}_{kk} \end{bmatrix} \begin{bmatrix} \boldsymbol{X}_t \\ \boldsymbol{q}_k \end{bmatrix}$$
Step 2 – Multiply by elementary transformation

^{*} Henkel & Martens Rockwell International ~late 70s

Rubin (Cont'd)

$$\begin{bmatrix} \boldsymbol{X}_t \\ \boldsymbol{X}_o \end{bmatrix} = \begin{bmatrix} \boldsymbol{I}_{tt} & \boldsymbol{0} \\ \boldsymbol{G}_{ot}^R (\boldsymbol{G}_{tt}^R)^{-1} & \boldsymbol{\Phi}_{ok}^N - \boldsymbol{G}_{ot}^R (\boldsymbol{G}_{tt}^R)^{-1} \boldsymbol{\Phi}_{tk}^N \end{bmatrix} \begin{bmatrix} \boldsymbol{X}_t \\ \boldsymbol{q}_k \end{bmatrix}$$
 We get Rubin's Transformation

$$\begin{bmatrix} (G_{tt}^R)^{-1} & -(G_{tt}^R)^{-1} \mathbf{\Phi}_{tk}^N \\ 0 & I_{kk} \end{bmatrix} \begin{bmatrix} G_{tt}^R & \mathbf{\Phi}_{tk}^N \\ 0 & I_{kk} \end{bmatrix} = I \qquad \begin{array}{c} \text{Check for equivalence} \\ \text{equivalence} \end{array}$$

$$\begin{bmatrix} \bar{K}_{tt} & K_{tk} \\ K_{kt} & K_{kk} \end{bmatrix} = \begin{bmatrix} I_{tt} & 0 \\ G_{ot}^{R}(G_{tt}^{R})^{-1} & \Phi_{ok}^{N} - G_{ot}^{R}(G_{tt}^{R})^{-1} \Phi_{tk}^{N} \end{bmatrix}^{T} \begin{bmatrix} K_{tt} & K_{to} \\ K_{ot} & K_{oo} \end{bmatrix} \begin{bmatrix} I_{tt} & 0 \\ G_{ot}^{R}(G_{tt}^{R})^{-1} & \Phi_{ok}^{N} - G_{ot}^{R}(G_{tt}^{R})^{-1} \Phi_{tk}^{N} \end{bmatrix}^{T} \begin{bmatrix} M_{tt} & M_{to} \\ M_{tt} & M_{to} \end{bmatrix} \begin{bmatrix} I_{tt} & 0 \\ G_{ot}^{R}(G_{tt}^{R})^{-1} & \Phi_{ok}^{N} - G_{ot}^{R}(G_{tt}^{R})^{-1} \Phi_{tk}^{N} \end{bmatrix}^{T} \begin{bmatrix} M_{tt} & M_{to} \\ M_{ot} & M_{oo} \end{bmatrix} \begin{bmatrix} I_{tt} & 0 \\ G_{ot}^{R}(G_{tt}^{R})^{-1} & \Phi_{ok}^{N} - G_{ot}^{R}(G_{tt}^{R})^{-1} \Phi_{tk}^{N} \end{bmatrix}^{T}$$

MacNeal (1971)

$$\begin{bmatrix} \overline{K}_{tt} & K_{tk} \\ K_{kt} & K_{kk} \end{bmatrix} = \begin{bmatrix} I_{tt} & 0 \\ G_{ot}^{R} (G_{tt}^{R})^{-1} & \Phi_{ok}^{N} - G_{ot}^{R} (G_{tt}^{R})^{-1} \Phi_{tk}^{N} \end{bmatrix}^{T} \begin{bmatrix} K_{tt} & K_{to} \\ K_{ot} & K_{oo} \end{bmatrix} \begin{bmatrix} I_{tt} & 0 \\ G_{ot}^{R} (G_{tt}^{R})^{-1} & \Phi_{ok}^{N} - G_{ot}^{R} (G_{tt}^{R})^{-1} \Phi_{tk}^{N} \end{bmatrix}$$

$$\begin{bmatrix} \overline{M}_{tt} & M_{tk} \\ M_{kt} & M_{kk} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & I_{kk} \end{bmatrix}$$

MacNeal Reduced Stiffness & Mass

Craig-Chang (1977)

$$\begin{bmatrix} x_t \\ x_o \end{bmatrix} = \begin{bmatrix} G_{tt}^R & \Phi_{tk}^N \\ G_{ot}^R & \Phi_{ok}^N \end{bmatrix} \begin{bmatrix} q_t \\ q_k \end{bmatrix}$$

What is the relationship between Craig-Chang and Rubin Transformations?

Relationship Between Craig-Chang and Rubin

$$\begin{bmatrix} x_t \\ x_o \end{bmatrix} = \begin{bmatrix} G_{tt}^R & \mathbf{\Phi}_{tk}^N \\ G_{ot}^R & \mathbf{\Phi}_{ok}^N \end{bmatrix} \begin{bmatrix} q_t \\ q_k \end{bmatrix}$$

Craig-Chang

$$\begin{bmatrix} \boldsymbol{X}_t \\ \boldsymbol{X}_o \end{bmatrix} = \begin{bmatrix} \boldsymbol{I}_{tt} & \boldsymbol{0} \\ \boldsymbol{G}_{ot}^R (\boldsymbol{G}_{tt}^R)^{-1} & \boldsymbol{\Phi}_{ok}^N - \boldsymbol{G}_{ot}^R (\boldsymbol{G}_{tt}^R)^{-1} \boldsymbol{\Phi}_{tk}^N \end{bmatrix} \begin{bmatrix} \boldsymbol{X}_t \\ \boldsymbol{q}_k \end{bmatrix}$$
 Results in Rubin

$$\begin{bmatrix} (G_{tt}^R)^{-1} & -(G_{tt}^R)^{-1} \boldsymbol{\Phi}_{tk}^N \\ 0 & I_{kk} \end{bmatrix} \begin{bmatrix} G_{tt}^R & \boldsymbol{\Phi}_{tk}^N \\ 0 & I_{kk} \end{bmatrix} = I \quad \begin{array}{c} \text{Check equivalence} \\ \text{(all information} \\ \text{is retained)} \end{array}$$

Craig-Bampton with Free-Interface Normal Modes?

Original Craig-Bampton

Craig-Bampton w/ Free-Interface Normal Modes

Potential Linear Dependence!

Special Synthesis Procedure

Constructing Modified Craig-Bampton w/ Free-Interface Normal Modes

$$\begin{bmatrix} x_t \\ x_o \end{bmatrix} = \begin{bmatrix} I_{tt} & 0 \\ \mathbf{\Phi}_{ot}^C & \mathbf{\Phi}_{ok}^E - \mathbf{\Phi}_{ot}^C \mathbf{\Phi}_{tk}^E \end{bmatrix} \begin{bmatrix} x_t \\ q_k \end{bmatrix}$$
 Modified C-B w/ Free-Interface Modes

$$\begin{bmatrix} I_{tt} & -\Phi_{tk}^E \\ 0 & I_{kk} \end{bmatrix} \begin{bmatrix} I_{tt} & \Phi_{tk}^E \\ 0 & I_{kk} \end{bmatrix} = \begin{bmatrix} I_{tt} & 0 \\ 0 & I_{kk} \end{bmatrix}$$
 Check equivalence

Add Inertia-Relief Modes to Improve Accuracy

$$\begin{bmatrix} x_t \\ x_o \end{bmatrix} = \begin{bmatrix} I_{tt} & 0 & 0 \\ \mathbf{\Phi}_{ot}^C & \mathbf{\Phi}_{or}^A & \mathbf{\Phi}_{ok}^E - \mathbf{\Phi}_{ot}^C \mathbf{\Phi}_{tk}^E \end{bmatrix} \begin{bmatrix} x_t \\ q_r^A \\ q_k \end{bmatrix}$$

Modified Craig-Bampton w/ Free-Interface Normal Modes plus inertia-relief modes

Relationship Between Rubin and Modified Craig-Bampton w/ Free-Interface Normal Modes?

Rubin

Modified Craig-Bampton w/ Free-Interface Normal Modes + Inertia Relief

Alternative Free-Interface* Inertia-Relief Total Flexibility Form

$$\begin{bmatrix} X_t \\ X_o \end{bmatrix} = \begin{bmatrix} G_{tt}^A & \Phi_{tk}^N \\ G_{ot}^A & \Phi_{ok}^N \end{bmatrix} \begin{bmatrix} q_t \\ q_k \end{bmatrix}$$

$$\begin{bmatrix} \boldsymbol{X}_t \\ \boldsymbol{X}_o \end{bmatrix} = \begin{bmatrix} \boldsymbol{G}_{tt}^A & \boldsymbol{\Phi}_{tk}^N \\ \boldsymbol{G}_{ot}^A & \boldsymbol{\Phi}_{ok}^N \end{bmatrix} \begin{bmatrix} (\boldsymbol{G}_{tt}^A)^{-1} & -(\boldsymbol{G}_{tt}^A)^{-1} \boldsymbol{\Phi}_{tk}^N \\ \boldsymbol{0} & \boldsymbol{I}_{kk} \end{bmatrix} \begin{bmatrix} \boldsymbol{X}_t \\ \boldsymbol{q}_k \end{bmatrix} \quad \begin{array}{l} \text{Post-multiply} \\ \text{by elementary} \\ \text{transformation} \end{array}$$

$$\begin{cases} x_t \\ x_o \end{cases} = \begin{bmatrix} I_{tt} & 0 \\ G_{ot}^A (G_{tt}^A)^{-1} & \mathbf{\Phi}_{ok}^N - G_{ot}^A (G_{tt}^A)^{-1} \mathbf{\Phi}_{tk}^N \end{bmatrix} \begin{bmatrix} x_t \\ q_k \end{bmatrix}$$
 Final Transformation

$$\begin{bmatrix} (G_{tt}^A)^{-1} & -(G_{tt}^A)^{-1} \boldsymbol{\Phi}_{tk}^N \\ 0 & I_{kk} \end{bmatrix} \begin{bmatrix} G_{tt}^A & \boldsymbol{\Phi}_{tk}^N \\ 0 & I_{kk} \end{bmatrix} = I$$

Check for Equivalence

* Majed, Rockwell International, 1989

3 Equivalent Free-Interface Methods

$$\begin{bmatrix} x_t \\ x_o \end{bmatrix} = \begin{bmatrix} I_{tt} & 0 \\ G_{ot}^R (G_{tt}^R)^{-1} & \mathbf{\Phi}_{ok}^N - G_{ot}^R (G_{tt}^R)^{-1} \mathbf{\Phi}_{tk}^N \end{bmatrix} \begin{bmatrix} x_t \\ q_k \end{bmatrix}$$

Rubin

Modified Craig-Bampton With Free-Interface Normal Modes and Inertia Relief

$$\begin{bmatrix} \boldsymbol{X}_t \\ \boldsymbol{X}_o \end{bmatrix} = \begin{bmatrix} \boldsymbol{I}_{tt} & \boldsymbol{0} \\ \boldsymbol{G}_{ot}^A (\boldsymbol{G}_{tt}^A)^{-1} & \boldsymbol{\Phi}_{ok}^N - \boldsymbol{G}_{ot}^A (\boldsymbol{G}_{tt}^A)^{-1} \boldsymbol{\Phi}_{tk}^N \end{bmatrix} \begin{bmatrix} \boldsymbol{X}_t \\ \boldsymbol{q}_k \end{bmatrix}$$
 Inertia-Relief Total Flexibility Form

Factor the Resulting Reduced Stiffness for Different Forms & Investigate

$$K^{\text{Rubin}} = \begin{bmatrix} (G_{tt}^{R})^{-1} & -(G_{tt}^{R})^{-1} \boldsymbol{\Phi}_{tk}^{N} \\ 0 & I_{kk} \end{bmatrix}^{T} \begin{bmatrix} G_{tt}^{R} & 0 \\ 0 & \boldsymbol{\omega}_{k}^{2} \end{bmatrix} \begin{bmatrix} (G_{tt}^{R})^{-1} & -(G_{tt}^{R})^{-1} \boldsymbol{\Phi}_{tk}^{N} \\ 0 & I_{kk} \end{bmatrix}$$

$$K^{\text{Modified CB}} = \begin{bmatrix} I_{tt} & 0 & -\Phi_{tk}^{E} \\ 0 & I_{rr} & 0 \\ 0 & 0 & I_{kk} \end{bmatrix}^{T} \begin{bmatrix} K_{tt}^{C} & 0 & K_{tk}^{CE} \\ 0 & K_{rr}^{A} & 0 \\ K_{kt}^{EC} & 0 & \omega_{k}^{2} \end{bmatrix} \begin{bmatrix} I_{tt} & 0 & -\Phi_{tk}^{E} \\ 0 & I_{rr} & 0 \\ 0 & 0 & I_{kk} \end{bmatrix}$$

$$K^{\text{Alternate}} = \begin{bmatrix} (G_{tt}^{A})^{-1} & -(G_{tt}^{A})^{-1} \Phi_{tk}^{N} \\ 0 & I_{kk} \end{bmatrix}^{T} \begin{bmatrix} K_{tt}^{A} & K_{tk}^{AN} \\ K_{kt}^{NA} & \omega_{k}^{2} \end{bmatrix} \begin{bmatrix} (G_{tt}^{A})^{-1} & -(G_{tt}^{A})^{-1} \Phi_{tk}^{N} \\ 0 & I_{kk} \end{bmatrix}$$

Special Topic: Deriving Fixed-Interface Normal Modes from Free-Interface Normal Modes and Residual Flexibility

Why? All about comfort level of engineers with Craig-Bampton vs Rubin-MacNeal. Reason for doing this may be that you have executed an unconstrained modal test but would like to directly incorporate that data into a Craig-Bampton form (instead of Rubin-MacNeal). In the '90s, a journal publications came out on deriving fixed-interface modes from mass-loaded interface modes. Subsequent to that, another paper with the more robust method of deriving fixed-interface modes from free-interface modes and residual flexibility. The issue of deriving constraint modes was An open question. However, some of the relations derived in this presentation may be useful in that.

$$K^{\text{Rubin}} = \begin{bmatrix} (G_{tt}^R)^{-1} & -(G_{tt}^R)^{-1} \Phi_{tk}^N \\ 0 & I_{kk} \end{bmatrix}^T \begin{bmatrix} G_{tt}^R & 0 \\ 0 & \omega_k^2 \end{bmatrix} \begin{bmatrix} (G_{tt}^R)^{-1} & -(G_{tt}^R)^{-1} \Phi_{tk}^N \\ 0 & I_{kk} \end{bmatrix} = \begin{bmatrix} (G_{tt}^R)^{-1} & -(G_{tt}^R)^{-1} \Phi_{tk}^N \\ -(\Phi_{tk}^N)^T (G_{tt}^R)^{-1} & \omega_{kk}^2 + (\Phi_{tk}^N)^T (G_{tt}^R)^{-1} \Phi_{tk}^N \end{bmatrix}$$

$$M^{MacNeal} = \begin{bmatrix} 0 & 0 \\ 0 & I_{kk} \end{bmatrix}$$

Mixed-Interface Methods (Def.)

Physical DoFs in the Modal Reduction Coordinate Transformation may be ALL FIXED, ALL FREE, or ANY Combination of FIXED and FREE when calculating the Normal Modes

Hintz (1975) Method of Constraint Modes

Hintz's Method of Constraint Modes

(potential for linear dependencies; special synthesis procedure)

Herting (1978)

What is the relationship between Herting's Transformation and Hintz's Method of Constraint Modes Transformation?

Relationship Between Herting and Hintz's methods

$$\begin{bmatrix} I_{tt} & 0 & -\Phi_{tk}^{E} \\ 0 & I_{rr} & 0 \\ 0 & 0 & I_{kk} \end{bmatrix} \begin{bmatrix} I_{tt} & 0 & \Phi_{tk}^{E} \\ 0 & I_{rr} & 0 \\ 0 & 0 & I_{kk} \end{bmatrix} = I$$

Check for Equivalence (all information retained)

Then per Equivalence Theorem, Herting's and Hintz's Transformations are Equivalent!

$$\begin{bmatrix} I_{tt} & 0 & 0 \\ \Phi_{ot}^C & \Phi_{or}^A & \Phi_{ok}^E - \Phi_{ot}^C \Phi_{tk}^E \end{bmatrix}$$

Herting's Method

Hintz (1975) Method of Attachment Modes

$$\begin{pmatrix} x_r \\ x_b \\ x_o \end{pmatrix} = \begin{bmatrix} I_{rr} & 0 & 0 & \Phi_{rk}^E \\ \Phi_{br}^R & \Phi_{bb}^A & 0 & \Phi_{bk}^E \\ \Phi_{or}^R & \Phi_{ob}^A & \Phi_{or}^A & \Phi_{ok}^E \end{bmatrix} \begin{pmatrix} q_r \\ q_b \\ q_r^A \\ q_r \\ q_k \end{pmatrix}$$

e1

Hintz Method of Attachment Modes – Cont'd

$$\begin{bmatrix} X_r \\ X_b \\ X_o \end{bmatrix} = \begin{bmatrix} I_{rr} & 0 & 0 & 0 \\ \Phi_{br}^R & \Phi_{bb}^A & 0 & \Phi_{bk}^E - \Phi_{br}^R \Phi_{rk}^E \\ \Phi_{or}^R & \Phi_{ob}^A & \Phi_{or}^A & \Phi_{ok}^E - \Phi_{or}^R \Phi_{rk}^E \end{bmatrix} \begin{bmatrix} I_{rr} & 0 & 0 & 0 \\ -(\Phi_{bb}^A)^{-1} \Phi_{br}^R & (\Phi_{bb}^A)^{-1} & 0 & -(\Phi_{bb}^A)^{-1} (\Phi_{bk}^E - \Phi_{br}^R \Phi_{rk}^E) \\ 0 & 0 & I_{rr} & 0 \\ 0 & 0 & I_{kk} \end{bmatrix} \begin{bmatrix} X_r \\ X_b \\ Q_r^A \\ Q_k \end{bmatrix}$$

e2

Hintz Method of Attachment Modes Cont'd

$$\begin{bmatrix} I_{rr} & 0 & 0 & -\Phi_{rk}^E \\ 0 & I_{bb} & 0 & 0 \\ 0 & 0 & I_{rr} & 0 \\ 0 & 0 & 0 & I_{kk} \end{bmatrix} \begin{bmatrix} I_{rr} & 0 & 0 & 0 \\ -(\Phi_{bb}^A)^{-1}\Phi_{br}^R & (\Phi_{bb}^A)^{-1} & 0 & -(\Phi_{bb}^A)^{-1}(\Phi_{bk}^E - \Phi_{br}^R \Phi_{rk}^E) \\ 0 & 0 & 0 & I_{rr} & 0 \\ 0 & 0 & 0 & I_{kk} \end{bmatrix}$$

e1

e2

$$\begin{vmatrix} x_r \\ x_b \\ x_o \end{vmatrix} = \begin{bmatrix} I_{rr} & 0 & 0 & 0 \\ 0 & I_{bb} & 0 & 0 \\ \Phi_{or}^R - \Phi_{ob}^A (\Phi_{bb}^A)^{-1} \Phi_{br}^R & \Phi_{ob}^A (\Phi_{bb}^A)^{-1} & \Phi_{or}^A & -\Phi_{ob}^A (\Phi_{bb}^A)^{-1} (\Phi_{bk}^E - \Phi_{br}^R \Phi_{rk}^E) + \Phi_{ok}^E - \Phi_{or}^R \Phi_{rk}^E \end{bmatrix} \begin{vmatrix} x_r \\ x_b \\ q_r^A \\ q_r \end{vmatrix}$$

Comparison of Hintz Method of Constraint Modes and Attachment Modes

$$\begin{bmatrix} x_t \\ x_o \end{bmatrix} = \begin{bmatrix} I_{tt} & 0 & 0 \\ \Phi_{ot}^C & \Phi_{or}^A & \Phi_{ok}^E - \Phi_{ot}^C \Phi_{tk}^E \end{bmatrix} \begin{bmatrix} x_t \\ q_r^A \\ q_k \end{bmatrix}$$

Modified Hintz Method of Constraint Modes

$$\begin{bmatrix} x_r \\ x_b \\ x_o \end{bmatrix} = \begin{bmatrix} I_{rr} & 0 & 0 & 0 \\ 0 & I_{bb} & 0 & 0 \\ \Phi_{or}^R - \Phi_{ob}^A (\Phi_{bb}^A)^{-1} \Phi_{br}^R & \Phi_{ob}^A (\Phi_{bb}^A)^{-1} & \Phi_{or}^A & -\Phi_{ob}^A (\Phi_{bb}^A)^{-1} (\Phi_{bk}^E - \Phi_{br}^R \Phi_{rk}^E) + \Phi_{ok}^E - \Phi_{or}^R \Phi_{rk}^E \end{bmatrix} \begin{bmatrix} x_r \\ x_b \\ q_r^A \\ q_k \end{bmatrix}$$

Modified Hintz Method of Attachment Modes

Residual Flexibility Mixed-Boundary (RFMB)*

$$\begin{bmatrix} x_j \\ x_c \\ x_o \end{bmatrix} = \begin{bmatrix} I_{jj} & 0 & 0 & 0 \\ \Phi_{cj}^C & G_{cc}^R & 0 & \Phi_{ck}^E \\ \Phi_{oj}^C & G_{oc}^R & \Phi_{or}^A & \Phi_{ok}^E \end{bmatrix} \begin{bmatrix} I_{jj} & 0 & 0 & 0 \\ -(G_{cc}^R)^{-1} \Phi_{cj}^C & (G_{cc}^R)^{-1} & 0 & -(G_{cc}^R)^{-1} \Phi_{ck}^E \\ 0 & 0 & I_{rr} & 0 \\ 0 & 0 & I_{kk} \end{bmatrix} \begin{bmatrix} x_j \\ x_c \\ q_r^A \\ transformation \end{bmatrix}$$
 RFMB x Elementary transformation

RFMB (Cont'd)

$$\begin{bmatrix} I_{jj} & 0 & 0 & 0 \\ -(G_{cc}^R)^{-1} \Phi_{cj}^C & (G_{cc}^R)^{-1} & 0 & -(G_{cc}^R)^{-1} \Phi_{ck}^E \\ 0 & 0 & I_{rr} & 0 \\ 0 & 0 & 0 & I_{kk} \end{bmatrix} \begin{bmatrix} I_{jj} & 0 & 0 & 0 \\ \Phi_{cj}^C & G_{cc}^R & 0 & \Phi_{ck}^E \\ 0 & 0 & I_{rr} & 0 \\ 0 & 0 & 0 & I_{kk} \end{bmatrix} = I \quad \begin{array}{c} \text{Equivalence} \\ \text{Theorem} \\ \text{(information} \\ \text{conservation)} \end{array}$$

$$K^{\text{RFMB}} = \begin{bmatrix} I_{jj} & 0 & 0 & 0 \\ -(G_{cc}^R)^{-1} \Phi_{cj}^C & (G_{cc}^R)^{-1} & 0 & -(G_{cc}^R)^{-1} \Phi_{ck}^E \\ 0 & 0 & I_{rr} & 0 \\ 0 & 0 & 0 & I_{kk} \end{bmatrix}^T \begin{bmatrix} K_{jj}^C & 0 & 0 & 0 \\ 0 & G_{cc}^R & 0 & 0 \\ 0 & 0 & K_{rr}^A & 0 \\ 0 & 0 & 0 & \omega_k^2 \end{bmatrix} \begin{bmatrix} I_{jj} & 0 & 0 & 0 & 0 \\ -(G_{cc}^R)^{-1} \Phi_{cj}^C & (G_{cc}^R)^{-1} & 0 & -(G_{cc}^R)^{-1} \Phi_{ck}^E \\ 0 & 0 & 0 & I_{rr} & 0 \\ 0 & 0 & 0 & 0 & I_{kk} \end{bmatrix}$$

Concluding Remarks

- A simple systematic approach based on elementary matrix transformations was utilized to derive and study a large number of fixed, free, and mixed-interface modal reduction methods
- These elementary transformations were utilized to derive "modified" forms, study linear dependence, circumvent special synthesis procedures, and show "equivalence" between different forms
- It was shown that although certain forms are mathematically equivalent, they are still superior due to ease of direct derivation from test data
- Special topics involving damping and changing modal boundary conditions were addressed

NESC ACADEMY WEBCAST

Questions???

NESC ACADEMY WEBCAST

Thank you for Attending...